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Abstract
For the realization of a practical pressure scale based on equation of
state (EOS) data for selected calibrants, a detailed modelling of the
thermal contributions is required. While ‘parametric EOS’ forms with their
temperature-dependent parameters V0(T ), K0(T ), and K ′

0(T ) are useful for
limited ranges in pressure and temperature, the separate modelling of the zero-
temperature and thermal contributions is more appropriate especially for wide
temperature ranges under high pressures (Holzapfel W B, Hartwig M and
Sievers W 2001 J. Phys. Chem. Ref. Data 30). The remaining uncertainties
due to explicit anharmonic contributions beyond the implicit contributions of
the quasiharmonic approximation are therefore discussed here in more detail.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A detailed analysis of the thermal and thermo-elastic properties for Cu, Ag, and Au at ambient
pressure over a wide range in temperature has shown recently [1] that explicit anharmonic
contributions beyond the implicit contributions already included in the quasiharmonic phonon
approximation must be taken into account in an accurate modelling of these properties,
especially if this modelling is to give a precise description of equation of state (EOS) data
for extended regions in temperature and pressure. On the basis of a Mie–Grüneisen (MG)
model, which separates the thermal contributions from the zero-temperature EOS, explicit
anharmonic contributions have been worked out [1–5]. However, the variations of these
explicit anharmonic contributions under pressure have not yet been studied in detail. The
remaining uncertainties in these pressure dependences are analysed here with the intention of
giving more accurate estimates for the uncertainties in the present practical pressure scales
based on EOS data for pressure markers such as Cu, Ag, and Au [1].
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2. The model

Within the MG approach the total pressure

p(V , T ) = pc(V ) + pth(V , T ) (1)

is divided at first into the cold (zero-temperature) contribution pc(V ) and the thermal
contribution pth(V , T ), whereby the rigorous MG approach assumes that the temperature
T enters only as ‘scaled temperature’ τ = T/θ(V ) into

pth(V , T ) = γθ(V )

V
3Nkθ(V )u(τ ) (2)

and into the thermal internal energy

Uth(V , T ) = 3Nkθ(V )u(τ ). (3)

The ‘characteristic temperature’ θ(V ) and the Grüneisen parameter

γθ (V ) = d ln θ(V )/d ln V (4)

depend both only on the volume V . With the heat capacity at constant volume

CV (V , T ) = 3Nku′(τ ) (5)

with the derivative u′(τ ) = du(τ )/dτ , and with the isothermal bulk modulus KT (V , T ), one
finds that the ‘thermal’ Grüneisen parameter

γth(V , T ) = α(V , T )V KT (V , T )/CV (V , T ) (6)

becomes independent of T and equal to γθ within this rigorous MG approximation.
If one at first identifies θ with the low-temperature value of the commonly used Debye

temperature, one can then introduce explicit anharmonic corrections by the replacement of θ

in the previous (quasiharmonic) relations by a temperature-dependent anharmonic form:

θa(V , T ) = θ(V )(1 − A(V )u(τ )). (7)

To first order in A one obtains then for the thermal internal energy

Uth(V , T ) = 3Nkθu(1 + A(2τu′ − u′), (8)

for the heat capacity

CV (V , T ) = 3Nku′(1 + 2Aτ (u′ + uu′′/u′)), (9)

for the thermal Grüneisen parameter

γth(V , T ) = γθ − 2δAu, (10)

and for the (different) thermobaric Grüneisen parameter

γtb(V , T ) = V pth/Uth = γθ − δAu (11)

where the volume dependences of θ(V ), A(V ), and δA(V ) = d A/d ln V , as well as the
τ -dependence of u, u′, and u′′ are not indicated explicitly in the forms (8)–(11) just for
convenience.

The quasiharmonic phonon contribution in u(τ ) has been described [1] by a modified
pseudo-Debye–Einstein model (MoDE2) with a 10% pseudo-Debye contribution [2] for the
low-frequency acoustic phonons and two Einstein terms with adjusted frequency factors
f1 and f2 with 45% contributions, respectively. Furthermore, a small conduction electron
contribution is taken into account by �ue = 2Aelτ with the dimensionless parameter
Ael = (π2/12)(θ/TF); if the small correction Ael ≈ 0.01 is considered as constant, this
implies a scaling of the effective Fermi temperature TF like θ(V ). Typical fits of this model
to the ambient pressure data for Cu are represented in figure 1.
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Figure 1. MoDE2 fits [1] of experimental data [6–18] for CV 0(T ), V0(T ), K0(T ), and K ′
0(T ).

3. Results

With this type of fit the anharmonicity parameters A and δA were determined previously [1]
for Cu, Ag, and Au at ambient pressure with A ranging from 0.005(2) to 0.001(2) and δA

from 0.0030(5) to 0.032(3). The corresponding fit of γth0(T ) for Cu is illustrated here in
figure 2.

While δA effects the fit of V0(T ) only marginally, it makes a significant contribution
to γth0(T ) as shown in figure 2. Dispersion in the mode Grüneisen parameters γEi �= γθ

allows for a better fit of γth0(T ) at lower temperatures (T < θ) but this variation of γth0(T )

is not significant for the calculation of the thermal pressure due to the fact that the thermal
pressure at lower temperatures (T < θ), is very small anyway. The contribution of the δA-
term to the thermal pressure, on the other hand, increases like T 2 at higher temperatures and
therefore the possible variation of δA itself with pressure is certainly of interest. However, so
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Figure 2. The MoDE2 fit [1] of experimental data for γth0(T ). The dominant uncertainty in
the experimental data for α0(T ) is illustrated by different sets of data points [8, 10]. The effect
of δA = 0 and δA �= 0 is represented by the dashed–dotted and dashed curves marked ‘MG-fit’
and ‘MG + δA-fit’, respectively. Small deviations of this fit for γth0(T ) at lower temperatures
(T < θ0 = 342 K) result from volume-independent frequency factors f1 and f2, corresponding to
equal mode Grüneisen parameters γD = γE1 = γE2 = γθ . Adjusted values of γEi �= γθ result in
the solid curve marked ‘γi + δA-fit’.
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Figure 3. Decreases of the anharmonic contributions �γA = δAu = γθ − γtb under pressure
for constant δA, for a moderate decrease and for a strong decrease of δA with n = 0, 1, and 3 in
equation (12) respectively.

far nothing is known about this variation and therefore we assume at first δA = constant and, as
other alternatives, a decrease of δA with a crossover to negative values at a finite compression
v1 = V1/V0 = 0.5, as the more likely case, and at v3 = V3/V0 = 0.8 as an alternative with
an earlier crossover to negative values. The corresponding crossover pressures would be 540
and 54 GPa, respectively, and the actual form would be

δAn(x) = δAxn(xn − xn
n )/(1 − xn

n ) (12)

(with n = 0, 1, 3), where δA = 0.030, x0 = 0, x1 = 3
√

v1 = 0.794, and x3 = 3
√

v3 = 0.938,
since x0 drops out anyway. This crossover to negative values of δA(x) appears to be most likely
because a positive value of δA implies a continuous increase in the anharmonic contribution
under pressure, but, ultimately, a decrease should be expected.

Figure 3 illustrates for the Grüneisen parameters of Cu at 1000 K that the contribution of the
δA-term in equation (11) decreases in any case strongly with increasing pressure partly due to
the decrease of u(τ ). The resulting effect on the thermal pressure of Cu at 1000 K is illustrated
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Figure 4. The effect of anharmonic corrections δA �= 0 on the thermal pressure pth(T, v) of Cu at
1000 K with respect to the cold pressure pc(v) at the same volume V .

in figure 4, which shows that the total uncertainty of the thermal pressure of Cu at 1000 K due
to the uncertainty in the δA-term is about ±0.1 GPa. However, this uncertainty increases with
temperature quadratically. At room temperature, it can be completely neglected! More serious
errors are usually made by the representation of EOS data at elevated temperatures with the
use of a parametric EOS form, for instance of the type AP2 [1–5]:

pAP2 = 3K0
1 − x

x5
ec0(1−x)(1 + c2x(1 − x)). (13)

Thereby, the volume V0, the bulk modulus K0, and its pressure derivative K ′
0 at zero pressure

enter as temperature-dependent parameters, for instance in

x = (V/V0)
1/3, c0 = − ln(3K0/pFG0), c2 = 3

2 (K ′
0 − 3) − c0

with the Fermi gas pressure pFG0 = aFG(Z/V0)
5/3, where aFG = 0.023 37 GPa nm−5 is a

universal constant and Z/V0 represents the total (average) electron density at ambient pressure.
The corresponding relative error �p/p of the parametric pressure pAP2(V , T ) with respect to
the MG pressure pMG(V , T ) is illustrated in figure 5, where pMG is based on the form AP2
for the cold pressure pc in equation (1) with the thermal pressure pth in equation (1) using the
average anharmonic corrections according to δA1 of equation (12). Since the values for K0(T )

are usually well known, the parametric form uses these same values for K0(T ), which are
reproduced also by the MG form as illustrated before in figure 1. Due to the larger uncertainty
in the value for K ′

0, the value K ′
0e f f for the parametric form must be slightly readjusted to

minimize the deviation in the given pressure range. When the parametric form uses also a
different readjusted ‘effective’ value for K0, a positive deviation in �P/P would be produced
at zero pressure, but the average deviation could be reduced. Two curves for this �P/P ,
one for 300 K and one for 1000 K, are shown in figure 5 to illustrate that this difference
depends strongly on the temperature of these isotherms. The dotted and dash–dotted curves in
figure 5 represent the uncertainties from δA in the thermal pressure of Cu at 1000 K discussed
in figure 4. First of all, the relative error of this contribution amounts at most to 0.4% with its
maximum at low pressures! This uncertainty is almost an order of magnitude smaller than the
error introduced by the use of the parametric EOS form.

Finally, figure 6 illustrates that the relative deviations of various literature data [19–27]
for the 300 K isotherm of Cu are even larger than the differences discussed so far. Obviously,
these differences result from the limited accuracy of theoretical models on the one hand, and
from the problems in the thermal corrections of the shock wave data on the other hand. The
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Figure 5. Relative deviations �p/p from the present ‘best’ MG isotherm represented by the use
of the ‘average’ anharmonic correction (n = 1). The deviation obtained by the use of a constant
δA = 0.030 (n = 0) and the strongly decreasing form equation (12) with n = 3 are illustrated by
the dash–dotted and the dashed curve, respectively, for the 1000 K isotherm of Cu. Deviations of
the parametric EOS forms for 300 and 1000 K are represented by solid curves labelled with these
temperatures.
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Figure 6. Relative deviations �p/p of literature data from the present ‘best’ MG isotherm of Cu
at 300 K.

estimated uncertainties of the present MG EOSs are represented in figure 6 on the one hand
by the dash–dotted curve, illustrating a 10% uncertainty in the values for γθ , and on the other
hand by continuous thin lines, showing the effect of a ±0.15 uncertainty in the value of K ′

0.

4. Conclusions

The present MG approach with an AP2 form for the cold pressure pc and anharmonic
contributions added to the thermal pressure of the normal MG approach results in reliable
isotherms for normal solids such as Cu, Ag, and Au. These isotherms are based on ambient
pressure data for V0, K0, K ′

0, and CV 0, and on the use of a reasonable interpolation to the
ultimate Fermi gas behaviour by the use of the AP2 form for the cold pressure pc.

The total uncertainty in the present pressure scale based on these calibrants is estimated
to be smaller than 5% even at very strong compression. The anharmonic effects discussed in
this paper have not been studied in detail experimentally for any of these markers; however,
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the present considerations do illustrate that comparative x-ray diffraction measurements on
these markers at high temperature under high pressure are urgently needed to understand the
high-pressure–high-temperature EOS behaviour of these ‘simple’ marker materials.
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